### 1.2 FINDING LIMITS GRAPHICALLY AND NUMERICALLY

## An Introduction to Limits

Example: Sketch the graph of $f(x)=\frac{x^{2}-4}{x-2} \quad ; x \neq 2$

(a) What happens at $x=2$ ?
(b) Even though this function is not defined at $x=2$, we can still examine its behavior close to $x=2$. Complete the table of values of the function close to $x=2$.

$$
x \text { approaches } 2 \text { from the left } \longrightarrow \mid<x \text { approaches } 2 \text { from the right }
$$

| $x$ | 1.5 | 1.75 | 1.9 | 1.99 | 1.999 | 2 | 2.001 | 2.01 | 2.1 | 2.25 | 2.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ |  |  |  |  |  |  |  |  |  |  |  |

## Informal Definition of a Limit

Suppose a function $f$ is defined on an interval around $c$, but possibly not at the point $x=c$ itself. Suppose that as $x$ becomes sufficiently close to $c, f(x)$ becomes as close to a single number $L$ as we please.
We then say that the limit of $\boldsymbol{f}(\boldsymbol{x})$ as $\boldsymbol{x}$ approaches $\boldsymbol{c}$ is $\boldsymbol{L}$, and we write

$$
\lim _{x \rightarrow c} f(x)=L
$$

(c) Apply this definition to the function from above to find the $\lim _{x \rightarrow 2} f(x)$.

Example: Find $\lim _{x \rightarrow 2} g(x)$, where $g$ is defined as

$$
g(x)= \begin{cases}1, & x \neq 2 \\ 0, & x=2\end{cases}
$$



There are 3 basic ways to evaluate a limit. So far we have used two of them. In section 3, we will use the third.

1. Numerical approach ... Make a table
2. Graphical approach ... Draw a graph by hand or using the calculator
3. Analytical approach ... Use algebra or calculus (section 3)

## The Formal Definition of a Limit

When we say " $f(x)$ becomes as close to $L$ as we please" in the informal definition, we mean that we can specify a maximum distance between $f(x)$ and $L$. This distance is given by

$$
|f(x)-L|=\text { Distance between } f(x) \text { and } L
$$

We use the Greek letter $\varepsilon$ (epsilon) to stand for the maximum distance, so we require

$$
|f(x)-L|<\varepsilon
$$

Similarly, we interpret " $x$ becomes sufficiently close to $c$ " to mean

$$
|x-c|<\delta,
$$

where the Greek letter $\delta$ (delta) tells us how close $x$ must be to $c$. Then

$$
\lim _{x \rightarrow c} f(x)=L
$$

means that we can make the distance $|f(x)-L|$ between the function values and $L$ as small as we like (less than any number $\varepsilon>0$ ) by making the distance $|x-c|$ between $x$ and $c$ sufficiently small (less than some $\delta>0$ ).

Definition: Suppose a function $f$ is defined on an interval around $c$, but possibly not at the point $x=c$ itself. Suppose that for any $\varepsilon>0$ (as small as we like), there is a $\delta>0$ (sufficiently small) so that

$$
\text { if } 0<|x-c|<\delta \text {, then }|f(x)-L|<\varepsilon
$$

We then say the limit of $f(x)$ as $x$ approaches $c$ exists and write

$$
\lim _{x \rightarrow c} f(x)=L
$$

(Just for fun (:)) Symbolically this can be written as follows:

$$
\lim _{x \rightarrow c} f(x)=L \Leftrightarrow(\forall \varepsilon>0)(\exists \delta>0) \ni(0<|x-c|<\delta) \Rightarrow(|f(x)-L|<\varepsilon)
$$

Example: Consider the following function. Graphically show the definition of a limit.


Example: The graph of $f(x)=x^{2}-1$ is shown below. Find $\delta$ such that if $0<|x-2|<\delta$, then $|f(x)-3|<0.2$


## When Limits Do Not Exist

If there does not exist a number $L$ satisfying the condition in the definition, then we say the $\lim _{x \rightarrow c} f(x)$ does not exist.
Limits typically fail for three reasons:

1. $f(x)$ approaches a different number from the right side of $c$ than it approaches from the left side.
2. $f(x)$ increases or decreases without bound as $x$ approaches $c$.
3. $f(x)$ oscillates between two fixed values as $x$ approaches $c$.

Example: Investigate the existence of the following limits.
(a) $\lim _{x \rightarrow 0} \frac{|x|}{x}$


| $x$ | -0.5 | -0.25 | -0.1 | -.01 | -.001 | 0 | .001 | .01 | .1 | .25 | .5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ |  |  |  |  |  |  |  |  |  |  |  |

(b) $\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}$


| $x$ | 0 | .5 | .9 | .99 | .999 | 1 | 1.001 | 1.01 | 1.1 | 1.5 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ |  |  |  |  |  |  |  |  |  |  |  |

(c) $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$


| $x$ | $\frac{2}{\pi}$ | $\frac{2}{3 \pi}$ | $\frac{2}{5 \pi}$ | $\frac{2}{7 \pi}$ | $\frac{2}{9 \pi}$ | $\frac{2}{11 \pi}$ | $\frac{2}{13 \pi}$ | As $x \rightarrow 0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ |  |  |  |  |  |  |  |  |

$\mathcal{J}($ NOTE): Throughout the text, when you see

$$
\lim _{x \rightarrow c} f(x)=L
$$

two statements are implied $\rightarrow$ (1) the limit exists, and (2) the limit is $L$.

