Chapter 17: Probability Models

Bernoulli Trials:

A situation is called a Bernoulli trial if it meets the following criteria:

- There are only two possible outcomes (categorized as SUCCESS or FAILURE for each trial
- The probability of success, denoted p, is the same for each trial
- The trials are INDEPENDENT
(Note that the independence assumption is violated whenever we sample without replacement, but is overridden by the 10% condition. As long as we don't sample more than 10% of the population, the probabilities don't change enough to matter.)

1. A new sales gimmick has 30% of the $\mathrm{M} \& \mathrm{M}$'s covered with speckles. These "groovy" candies are mixed randomly with the normal candies as they are put into the bags for distribution and sale. You buy a bag and remove candies one at a time looking for the speckles.
a. Is this situation a Bernoulli trial? Explain. YES, SUCCESS=SPECKLES, FAILURE=NO SPECKLES, p=30\%, TRIALS ARE INDEPENDENT (TECHNICALLY NOT INDEPENDENT, BUT CLOSE ENOUGH ACCORDING TO THE 10\% RULE)
b. What's the probability that the first speckled candy is the fourth one we draw from the bag? $P(X=4)=(0.7)^{3}(0.3)$
c. What's the probability that the first speckled candy is the tenth one?
$P(X=10)=(0.7)^{9}(0.3)$
d. Write a general formula.
$P(X=k)=(1-p)^{k-1}(p)$
e. What's the probability we find the first speckled one among the first three we look at? $1-P(X=0)=1-(0.7)^{3}$
f. How many do we expect to have to check, on average, to find a speckled one? $1 / p=3.3333333$

Geometric Distributions:

Suppose the random variable $X=$ the number of trials required to obtain the first success. Then X is a GEOMETRIC RANDOM VARIABLE if:

1. There are only two outcomes: SUCCESS or FAILURE
2. The probability of success p is CONSTANT for each observation.
3. The n observations are INDEPENDENT
4. The variable of interest is the NUMBER OF OBSERVATIONS UNTIL THE FIRST SUCCESS

Because n is not fixed there could be an infinite number of X values. However, the probability that X is a very large number is more and more unlikely. Therefore the probability histogram for a geometric distribution is always SKEWED RIGHT.

If X is a geometric random variable, it is said to have a GEOMTRIC DISTRIBUTION and is denoted as $\mathrm{G}(\mathrm{p})$.
The expected value (mean) of a geometric random variable is $1 / \mathrm{p}$.

The standard deviation of a geometric random variable is $\frac{\sqrt{1-p}}{p}$.

The probability that X is equal to x is given by the following formula: $P(X=x)=(1-p)^{x-1} p$
2. Refer back to the M\&M's distribution in problem 1.
a. What's the probability that we'll find two speckled ones in a handful of five candies?
(I let them try to reason this out. Some will say $(.3)^{2}(.7)^{3}$ and we discuss why that strategy doesn't work.)
b. List all possible combinations of exactly two speckled M\&M's in a handful of five candies. SSPPP SPSPP SPPSP SPPPS PSSPP PSPSP PSPPS PPSSP PPSPS PPPSS

Binomial Distributions:

Suppose the random variable $X=$ the number of successes in n observations.
Then X is a BINOMIAL RANDOM VARIABLE if:

1. There are only two outcomes: SUCCESS or FAILURE
2. The probability of success p is CONSTANT for each observation.
3. The n observations are INDEPENDENT
4. There is a FIXED NUMBER n of observations.

If X is a binomial random variable, it is said to have a BONOMIAL DISTRIBUTION and is denoted as $\mathrm{B}(\mathrm{n}, \mathrm{p})$.

The expected value (mean) of a binomial random variable is np .

The standard deviation of a binomial random variable is $\sqrt{n p q}$.

The PROBABILITY DISTRIBUTION FUNCTION (or PDF) assigns a probability to each value of X.
The CUMULATIVE DISTRIBUTION FUNCTION (or CDF) calculates the sum of the probabilities up to X.

Example: Suppose each child born to Jay and Kay has probability 0.25 of having blood type O. If Jay and Kay have 5 children, what is the probability that exactly 2 of them have type \mathbf{O} blood?

Let $\mathrm{X}=$ THE NUMBER OF CHILDREN WITH TYPE 0 BLOOD

1. There are only two outcomes: success (TYPE 0) or failure (NOT TYPE 0)
2. The probability of success (TYPE 0) is CONSTANT for each of the 5 observations.
3. Each of the 5 observations is INDEPENDENT, since one child's blood type will not influence the next child's blood type.
4. There is a fixed number of observations: 5 .

So X is a BINOMIAL RANDOM VARIABLE.

The following table shows the probability distribution function (PDF) for the binomial random variable, X.

x	0	1	2	3	4	5
$P(X=x)$	0.2373	0.3955	0.2637	0.0879	0.0146	0.001

$P(X=0)=P($ FFFFF $)=(0.75)^{5}=0.2373$
Binompdf $(5,0.25,0)=0.2373$
Binompdf $(5,0.25,1)=0.3955$
Binompdf $(5,0.25,2)=0.2637$
Binompdf $(5,0.25,3)=0.0879$
Binompdf $(5,0.25,4)=0.0146$
Binompdf $(5,0.25,5)=0.0010$
Construct a histogram of the p.d.f. using the window $X_{1}[0,6]$ and $Y_{0.1}[0,1]$.

The following table shows the cumulative distribution function (\qquad) for the binomial random variable, X .

x	0	1	2	3	4	5
$P(X=x)$	0.2373	0.3955	0.2637	0.0879	0.0146	0.001
$P(X \leq x)$	0.2373	0.6328	0.8965	0.9844	0.999	1

Binomcdf ($5,0.25,0)=0.2373$
Binomcdf $(5,0.25,1)=0.6328$
Binomcdf $(5,0.25,2)=0.8965$
Binomcdf $(5,0.25,3)=0.9844$
Binomcdf $(5,0.25,4)=0.999$
Binomcdf $(5,0.25,5)=1$
Construct a histogram of the c.d.f. using the window $X_{1}[0,6]$ and $Y_{0.1}[0,1]$.

1. Suppose I have a group of 4 students and I want to choose 1 of them as a volunteer. In how many ways can I choose 1 out of 4 students?
Call this "___ 4 CHOOSE $1 _$." There are ____ $4 \ldots \quad$ ways.
2. Suppose I have a group of 4 students and I want to choose 2 of them as volunteers. In how many ways can I choose 2 out of 4 students?

Call this " \qquad 4 CHOOSE 2 \qquad ." There are \qquad 6 \qquad ways.
3. Suppose I have a group of 5 students and I want to choose 1 of them as a volunteer. In how many ways can I choose 1 out of 5 students?

Call this " \qquad 5 CHOOSE 1 \qquad ." There are \qquad 5 \qquad ways.
4. Suppose I have a group of 5 students and I want to choose 3 of them as a volunteer. In how many ways can I choose 3 out of 5 students?

Call this " \qquad 5 CHOOSE 3 \qquad ." There are \qquad 10 \qquad ways.
5. Suppose I have a group of 20 students and I want to choose 4 of them as a volunteer. In how many ways can I choose 4 out of 20 students?

SSSSFFFFFFFFFFFFFFFF
FSSSSFFFFFFFFFFFFFFF
FSFFFFSFFFSFFFFFFFSF
... and so on...

Call this " \qquad 20 CHOOSE 4 \qquad ." There are \qquad 4845 \qquad ways.

There is a mathematical way to count the total number of ways to arrange k out of n objects. This is called " \qquad N CHOOSE K \qquad " or the _BINOMIAL COEFFICIENT_.

The binomial coefficient is the number of ways to arrange k successes in n observations. It is written ___ $\binom{n}{k} \quad$ and is called " \qquad N CHOOSE K \qquad .$"$

The value of " n choose k " is given by the formula: $\frac{n!}{k!(n-k)!}$

Example: " 5 choose 2 " $\frac{5!}{2!(5-2)!}=\frac{5!}{2!3!}=\frac{5 \cdot 4 \cdot 3!}{2!3!}=\frac{20}{2}=10$

So there are \qquad 10 \qquad ways to arrange 2 out of 5 objects.

Think of this as flipping a coin 5 times and getting 2 heads. In how many ways can that happen? It can happen in \qquad 10 \qquad ways.

If X is a binomial random variable with parameters n and p, then

$$
P(X=x)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

